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Thermodynamics of self-gravitating systems with softened potentials
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The microcanonical statistical mechanics of a set of self-gravitating particles is analyzed in a mean-field
approach. In order to deal with an upper bounded entropy functional, a softened gravitational potential is used.
The softening is achieved by truncating toN terms an expansion of the Newtonian potential in spherical Bessel
functions. The orderN is related to the softening at short distances. This regularization has the remarkable
property that it allows for an exact solution of the mean-field equation. It is found that forN not too large the
absolute maximum of the entropy coincides to high accuracy with the solution of the Lane-Emden equation,
which determines the mean-field mass distribution for the Newtonian potential for energies larger thanEc

'20.335GM2/R. Below this energy a collapsing phase transition, with negative specific heat, takes place.
The dependence of this result on the regularizing parameterN is discussed.

PACS number~s!: 05.20.2y, 05.70.2a, 05.90.1m, 64.90.1b
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I. INTRODUCTION

The statistical mechanics of self-gravitating systems
amazing. It has been studied since long ago by Antonov@1#,
Lynden-Bell and Wood@2#, Thirring @3#, and Kiessling@4#,
among others@5#. One reason for the interesting and pecul
behavior of these systems is that they are thermodynamic
unstable. The usual thermodynamic limit exists only
those systems that are thermodynamically stable@6#. For a
system ofNp classical particles interacting via a two-bod
potentialf(r ), a sufficient condition for thermodynamic sta
bility states that there must exist a positive constantE0 such
that for each configuration$r1 , . . . ,rNp

%, the following in-
equality is obeyed@6#:

F~r1 , . . . ,rNp
!5

1

2 (
iÞ j

f~ ur i2r j u!>2NpE0 . ~1!

By contrast, self-gravitating systems do not possess a pr
thermodynamic limit. Moreover, due to the short-distan
singularity of the gravitational potential, the entropy is n
even well defined: it diverges for any value of the ener
@1,5#. To define the thermodynamics of these systems
potential must be regularized at short distances. This ca
done in many different ways. Using particles endowed wit
hard core is one possibility@7,8#. In this case, the potential i
repulsive and singular at short distances. Other pop
choices are the so-called softened potentials, which
smooth at the origin. As shown by Thirring@3#, the thermo-
dynamic instability is caused neither by the singularity n
by the long-range nature of the potential, but is due to
fact that the potential is always attractive.1 The essential
common feature of these purely attractive potentials is

1In the case of hard core particles the potential is repulsive at s
distances and the thermodynamic instability is actually due to
long-range forces.
PRE 611063-651X/2000/61~6!/6270~8!/$15.00
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appearance of a phase transition separating a high-en
homogeneous phase~HP! from a low-energy collapsing
phase~CP! @9–11#. The phase transition takes place in
energy interval with negative microcanonical specific he
From the dynamic point of view, both phases are also diff
ent: the single-particle motion is superdiffusive in the CP a
ballistic in the HP@12,13#. The dynamics and statistics o
simple low-dimensional models with long-range attracti
forces has been studied in@12–15#. Their conclusions sup-
port the idea of a collapsing phase transition as in
Thirring model. If angular momentum is conserved, the si
ation could be substantially altered@16#.

As mentioned, the usual thermodynamic limit does n
exist for unstable systems. To have well defined thermo
namics when the number of particlesNp is huge, the follow-
ing scaling must be considered: the potential energy is
caled by 1/Np and then the energy and entropy scale w
Np . It has been proved for the canonical ensemble that
scaling reproduces mean-field theory exactly in the lim
Np→` @17#. This means that correlations among two
more particles vanish, and therefore the equilibrium stat
characterized by a one-particle density only, which mi
mizes the free energy functional. Although we are not aw
of any rigorous proof, we shall assume here that the sa
holds for the microcanonical ensemble, changing minimi
tion of the free energy by maximization of the entropy fun
tional.

If the troubles caused by the short-distance singularity
ignored, it is possible to write down a mean-field entro
functional for self-gravitating systems, which depends o
on the particle density. This functional is not upper bound
and, therefore, has no absolute maximum, a reflection of
fact that the entropy is not defined in the finite system. F
energies larger thanEc'20.335GM2/R there is, however, a
local maximum. Below this energy, no local maximum of t
entropy exists@1#. This fact was explained in terms of
transition from the homogeneous isothermal sphere beha
to the CP atEc . The transition produces negative speci

rt
e
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heat, and was called the gravo-thermal catastrophe@2#. Very
recently, it has been pointed out that the low-energy ph
might be described by a spherically nonsymmetric deform
tion of the singular solution of the isothermal Lane-Emd
equation@18#.

The gravitational potential must be modified at short d
tances to make equilibrium statistical mechanics applica
to self-gravitating systems. As shown by Kiessling for t
canonical ensemble@4#, in the limit where the classical gravi
tational potential is recovered, the equilibrium state a
proaches a particle distribution with all particles collapsi
at a single point. The behavior of the system will depend
the scales at which the regularization is effective. Th
might be regularized potentials which, in the mean-fie
limit, produce the global maximum of their associated e
tropy close to the solution of the isothermal Lane-Emd
equation for energiesE>Ec . If this is the case, a collapsin
transition should occur at some energy close toEc . The CP
is expected to be very sensitive to the details of the regu
ization at short distances and the HP almost insensitive t
On the other hand, if the regularization is effective only
very short distances, the solutions of the isothermal La
Emden equation will be global maxima of the entropy on
at very high energies, and therefore the collapsing transi
will take place at some energy much larger thanEc . The
smaller the scale at which the regularized potential diff
significantly from the unregularized one, the higher the cr
cal energy will be. A very similar picture was rigorous
established by Kiessling for the canonical ensemble@4#.

In this paper we introduce a convenient new soften
procedure for the regularization of the gravitational potent
and we investigate the consequences in the microcano
thermodynamics of self-gravitating systems. The rest of
article is organized as follows: in Sec. II we introduce t
family of potentials to be studied; in Sec. III we derive th
mean-field equation and its general solution in terms of a
of algebraic equations; Sec. IV is devoted to a discussio
the results and Sec. V to summarizing the conclusions.

II. SOFTENED POTENTIAL

As mentioned in the Introduction, the short-distance s
gularity of the gravitational potential causes many troubl
What is more, for a real system such singularity is not phy
cal, since at short distances new physics must be taken
account. Thus, the potential should be modified at short
tances to avoid the singularity. In simulations of cosmolo
cal problems a widely used potential is the so-called Plu
mer softened potential@19,20#:

f~r !52
GM2

Ar 21s2
. ~2!

For r @s, Eq. ~2! coincides with the gravitational potentia
Other softened potentials are those known as spline softe
@21#. The equilibrium thermodynamics of systems with the
softened potentials has been studied in@22#, and the dynami-
cal effects of softening were considered in@23#. The form of
the potential at short distances is arbitrary to a large ext
since we do not know how the new interactions modify i
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The problems with the singularity of the gravitational p
tential in statistical mechanics disappear if the equilibriu
distribution is modified appropriately. For instance, if th
approach to equilibrium is collisionless, via violent rela
ation, the equilibrium state is described by the Lynden-B
statistics@24#, whose one-particle distribution is of Ferm
Dirac type, and produces an effective repulsion at short
tances@25#.

The regularized potential we propose, which, as we s
discuss, has several remarkable features making it very
venient for thermodynamical purposes, is based on the
lowing identity:2

1

x
54(

k51

`
sin@~2k21!px#

~2k21!px
, 0,x,1. ~3!

The singularity at the origin is removed by truncating t
series to a given orderN. Let us consider a system ofNp
particles confined within a sphere of radiusR in 3 dimen-
sions. The maximum distance between two particles isR.
Hence, our potential must represent 1/r for distances 0!r
,2R. Therefore, we choose the following interaction ener
between two particles of massm located atr and r8:

f~ ur2r8u!52
Gm2

R
2(

k51

N

fk~ ur2r8u/R!, ~4!

wherefk(x)5sin(vk x)/(vk x) are spherical Bessel function
of order zero andvk5(2k21)p/2. Figure 1 displays the
singular potential and the regularized potential withN510
andN520. A similar expansion has been used to introdu
simple models in low dimensions that make it possible
perform numerical simulations of systems with long-ran
attractive forces with CPU time growing only as the numb
of particles@12–14#.

What is remarkable about Eq.~4! is that each term obey
the following differential equation:

2Equation~3! follows immediately from the sine series expansi
of the constant function,f (x)51, in the interval (0,1).

FIG. 1. Newtonian and regularized potentials withN510 and
20, in units ofGM2/R.



y-

a
c

ab
on
f
la

n
te

e

-
,
ca

e
ok

y

t
s-

,

sel
in
po-

l

ion
nt

e

m
his

n

6272 PRE 61EDUARDO FOLLANA AND VICTOR LALIENA
S ¹21
vk

2

R2D fk~r /R!50, ~5!

so that the potential~4! verifies

DNf~r !50, ~6!

where

DN5)
k51

N S ¹21
vk

2

R2D . ~7!

This relation will prove very useful in the mean-field anal
sis of the next section.

III. MEAN-FIELD ANALYSIS

It is well known that long-range forces suppress fluctu
tions, and thus in these cases a mean-field analysis is a
rate or even exact. We expect that, dealing with an unst
system in the scaling regime described in the Introducti
the description of the thermodynamical state in terms o
one-particle density, neglecting two or more particle corre
tions, gives the essential physical behavior@17#. We will
derive in this section the form of the mean-field equation a
of the corresponding thermodynamic quantities for a sys
whose dynamics is governed by a potential of the form~4!.

A. Mean-field equation

Let us consider a system of particles enclosed in a sph
cal region of radiusR and volumeV54/3pR3, with a total
massM distributed according to a smooth densityr(r), nor-
malized such that*d3rr(r)51, and interacting via a two
body central potentialf(ur2r8u). If the potential is smooth
the entropy per particle in the microcanonical ensemble
be written in terms of the particle density as@5#

S52E d3rr~r!@ ln Vr~r!21#1 3
2 ln ~E2F!, ~8!

whereE is the total energy andF is the potential energy:

F@r#5
1

2E d3rd3r 8r~r!f~ ur2r8u!r~r8!. ~9!

The volumeV entering the first term of the right-hand sid
~rhs! in Eq. ~8! has been included to make the entropy lo
dimensionally correct, and plays no significant role since
only shifts the entropy by a constant. The physical densit
the absolute maximum of Eq.~8! under the constraint*r
51. Differentiating with respect tor, we arrive at the fol-
lowing integral equation:

ln Vr~r!5m2 3
2 bE d3r 8f~ ur2r8u!r~r8!, ~10!

whereb51/(E2F) andm is the Lagrange multiplier for the
constraint*r51. Definingn(r) by

r~r!5
1

V
exp@m1n~r!#, ~11!

the constraint is solved by taking
-
cu-
le
,

a
-

d
m

ri-

n

it
is

em5
V

E d3ren(r)

. ~12!

Substituting Eqs.~11! and ~12! in ~10!, we obtain forn(r):

n~r!52
3

2
b
E d3r 8f~ ur2r8u!en(r8)

E d3r 8en(r8)

. ~13!

If we take forf(r ) the Newtonian potential, we know tha
the entropy is not well defined. Nevertheless, it is still po
sible to start formally with the entropy functional~8!, which
gives a finite result for any smooth distributionr(r), but is
unbounded~see IV C!. There can still exist local maxima
which are then solutions of Eq.~13!. By expanding the right-
hand side of this equation in a series of spherical Bes
functions and truncating after N terms, one would obta
results equivalent to the ones we get using the softened
tential.

If we now particularize Eq.~13! to the softened potentia
~4!, we see thatn(r) obeys the same differential equation~6!
as the potential. Imposing rotational symmetry onn @1,2#, we
obtain the following ordinary differential equation:

)
k51

N S d2

dr2
1

2

r

d

dr
1

vk
2

R2D n~r !50. ~14!

The general solution of this equation is a linear combinat
of $sin(vkr)/r% and$cos(vkr)/r%. The cosines should be abse
from the solution since Eq.~13! implies thatn is smooth.
~Only atT50, i.e.,b5`, is n singular.! Indeed, it is shown
explicitly in Appendix A that the solution of Eq.~13! can be
written as

n~r !5 (
k51

N

nkfk~r /R!, ~15!

where nk are N numerical coefficients determined by th
following set of equations:

nk53b
GM2

R

E
0

1

dx x2fk~x!expH(
k

nkfk~x!J
E

0

1

dx x2expH(
k

nkfk~x!J . ~16!

The integral equation~13! has been reduced to a system ofN
nonlinear algebraic equations withN unknowns. It can be
solved by iteration, for instance with a Newton algorith
~see Appendix B for a summary of the method used in t
work!.

B. Thermodynamical quantities

Using formula~A2! of Appendix A, it is straightforward
to verify that for a spherically symmetric mass distributio
exp@m1n(r)#, the potential energy is given by
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F52
GM2

R (
k51

N F E
0

R

dr r 2fk~r /R!en(r )

E
0

R

dr r 2en(r ) G 2

. ~17!

For an equilibrium distribution of the form~15!, Eq. ~16!
implies

F52
1

9b2

R

GM2 (
k51

N

nk
2. ~18!

Hence, the total energy is

E5
1

b
2

1

9b2

R

GM2 (
k

nk
2 . ~19!

From Eq.~8! we easily obtain the equilibrium entropy

S52 lnF E
0

1

dx x2expS (
k

nkfk~x! D G

1
R

GM2

(
k

nk
2

3b
2

3

2
ln b. ~20!

Since the entropy is stationary under variations of the m
distribution, the inverse temperature is 1/T[]S/]E5b
51/(E2F).

IV. RESULTS

In order to present specific numerical results, it is con
nient to work with dimensionless quantities. We measure
energy in units of the characteristic energy,GM2/R, where
M is the total mass andR the radius of the confining sphere
The dimensionless energy is thene5ER/(GM2). Any other
quantity with dimensions of energy~such as the temperatur
1/b and the potential energyF) must be also understood t
be expressed in units ofGM2/R and, similarly, magnitudes
with dimensions of length are given in units ofR. As a mat-
ter of terminology, we shall apply the term Newtonian p
tential ~NP! to the unregularized potential,2GM2/r , New-
tonian entropy~NE! to its corresponding entropy, regularize
potential ~RP! to the potential regularized by Eq.~4!, and
regularized entropy~RE! to its associated entropy.

A. N Ä 10

For values ofN not too large, computations are easy. L
us describe the caseN510 in detail.~See Appendix B for a
summary of the numerical methods used in this work.! The
solution of Eq.~16! as a function of the energye provides all
thermodynamic functions. For each value ofe we found only
one solution, which should then be the absolute maximum
Eq. ~8!. We shall return to this point later on, in Sec. IV C
Figure 2 displays the inverse temperatureb51/T versuse.
In the thermodynamics of stable systems, this function m
be monotonically decreasing, since the entropy is a con
function of the energy@26#. In the present case, however,b
decreases withe in the low- and high-energy regimes, but
increases fore in (24.46,20.2) and, consequently, the sp
ss

-
e

-

t

of

st
x

cific heat is negative in this energy interval. This is a con
quence of the instability of the system.

As is usually the case with these systems@3#, the negative
specific heat region is associated with a transition to a c
lapsed phase. To investigate this, let us define an order
rameterk5R0 /R, whereR0 is the radius of the sphere cen
tered at the origin which contains 95% of the mass~of
course, the value of 95% is arbitrary!. Figure 3 displaysk
versuse. At e5` the mass is distributed homogeneous
and thenk5(0.95)1/3'0.9830. When the energy is reduce
k decreases monotonically and slowly. Notice the anom
at e;20.335; we shall discuss it in Sec. IV B. The collap
ing order parameterk varies abruptly in the region where th
specific heat is negative. It decays fromk;0.95, corre-
sponding to a homogeneous phase, tok;0.1. In the later
case, the mass distribution consists of a small dense core
a homogeneous tenuous halo.

The results of this section are similar to those found
regularizing the potential with hard core repulsions@7,8#, and
to those derived from the Lynden-Bell statistics applied

FIG. 2. Inverse temperature 1/T versus energye for N510.

FIG. 3. Order parameter of collapsing phase~see text, Sec.
IV A ! versus energye for N510.
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the unregularized potential@25#. It is remarkable that differ-
ent regularizations lead to similar results.

B. Newtonian potential

It is interesting to compare the maximum of the RE w
the local maximum of the NE. Substitutingf(ur2r8u)5
2GM2/ur2r8u in Eq. ~13!, and using the fact that this po
tential is a Green function of the Laplacian, we get the f
lowing differential equation:

¹2n~r!52 3
2 bem exp@n~r!#, ~21!

which, for spherically symmetricn, is equivalent to the iso-
thermal Lane-Emden equation@27,28,2#:

d2n~r !

dr2
1

2

r

dn~r !

dr
1

3

2
bemen(r )50 ~22!

The proper solutions of Eq.~22!, with b andm such thatb
51/(e2F) andm52 ln*drr2expn(r), give local maxima of
the entropy if e.20.335 @1,2#. The high-energy phas
should depend only weakly on the form of the potential
short distances. Therefore, the maximum of the RE in
high-energy phase might be an approximation to the lo
maximum of the NE given by Eq.~22!. This is indeed the
case.

To see how close the maximum of the RE is to the app
priate solution of Eq.~22!, we define a distance betwee
functions byD5max$unN510(r )2nLE(r )u%, where the sub-
scripts indicate the solutions of Eq.~16! with N510, and of
Eq. ~22!, respectively. Fore.20.335, i.e., when the Lane
Emden equation determines a local maximum of the NED
,1024. The absolute maximum of the RE is indeed a ve
good approximation to the local maximum of the NE.

Now, we can understand the anomaly ink arounde;
20.335, which was mentioned in Sec. IV A and which c
be appreciated in Fig. 3. At this point, which is close to t
energy at which the solutions of the Lane-Emden equa
cease to be local maxima of the NE, the nature of the m
mum of the RE also changes, originating anomalies suc
the pick in 1/T ~Fig. 2! and the fissure ink ~Fig. 3!.

The effect of the regularization is to deform the entro
functional dramatically for mass distributionsr(r ) which are
very concentrated at the origin. These distributions ge
huge amount of negative entropy after softening the po
tial, at least forN510, in such a way that there are n
maxima of the RE close to them. On the other hand,
entropy of smooth distributions that are not concentrate
sensitive to the global form of the potential rather than to
short distance details. Therefore, these distributions h
similar NE and RE, and they essentially do not feel the re
larization. The solutions of the Lane-Emden equation belo
to this class and, consequently, close to them there is a l
maximum of the RE which is indeed the global maximu
for not too largeN, in particular forN510.

C. N dependence

The NP can be arbitrarily well approximated at short d
tances by a RP withN sufficiently large. Consequently, th
maximum of the RE close to the local maximum of the N
-

t
e
al

-

y

n
i-
as

a
n-

e
is
e
ve
-
g
al

-

will attain the latter in theN→` limit and, obviously, must
cease to be the global maximum of the RE and becom
local one for some value ofN, which will be denoted byNc .
Since the maximum of the entropy depends on the ene
Nc is a function ofe. In principle, we can computeNc(e) by
solving Eq.~16! for large values ofN. In practice, however,
this is very difficult and we must content ourselves with
estimate ofNc .

To get the estimate, let us first analyze how matter dis
butions with arbitrarily high NE can be built. There is a
upper bound for the entropy functional~8! if the potential
energy~9! is bounded from below@F>Fmin for any r(r )]:

S<11 3
2 ln~e2Fmin!. ~23!

In the case of the RP,Fmin52N. Since the entropy has a
upper bound, it is reasonable to assume that it has a gl
maximum given by a regular functionn(r ) of the form~15!,
with coefficientsnk verifying ~16!. The potential energy as
sociated with the NP has no lower bound and theref
Fmin52`. Hence, Eq.~23! does not provide an uppe
bound for the NE. Indeed, it is straightforward to verify th
the distribution

r~r !55
3a

4pr 0
3

, 0,r ,r 0

3~12a!

4p~12r 0
3!

, r 0,r ,1,
~24!

with 0,a,1, has arbitrarily large entropy when we take t
limit r 0→0, while maintaininga ln r0 constant.3 This is true
for any value ofe. We shall call these distributions, for an
values ofa andr 0, special distributions~SD’s!. If N is large
enough, there are SD’s with larger RE than the maxim
close to the solution of the Lane-Emden equation.

As already claimed, it is very difficult to get the solution
of Eq. ~16! for large values ofN. To overcome this problem
and obtain an estimate ofNc , we shall study the restriction
of the RE to particle distributions of the form~24! ~SD!. In
this way, we have a RE that depends on only two parame
a and r 0. Now, the maximization of this entropy with re
spect toa andr 0 is an easy task, even for very large valu
of N. Obviously, the smaller value ofN for which the maxi-
mum of the restricted RE is larger than the RE of the cor
sponding solution of the Lane-Emden equation will give
estimate ofNc . Strictly speaking, this estimate is an upp
bound onNc .

Before analyzing the behavior withN, let us look again to
the N510 case, for which computations are easy. Figur

3Notice that in the limitr 0→0 with a ln r0 constant only an in-
finitesimal amount of matter collapses, while the rest is homo
neously distributed. This reflects the fact that it is enough that
particles~hard binaries! become arbitrarily close to make the pote
tial energy arbitrarily negative, and therefore the kinetic ene
arbitrarily large. However, since they constitute only two degrees
freedom, their contribution to the purely configurational entro
term *r(ln Vr21) of Eq. ~8! is negligible.
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displays the maximum of the restricted RE and the RE of
corresponding solution of Eq.~16!, both for N510, as a
function of e. The latter distribution always has larger R
than any SD. This, besides the fact that we did not find ot
solutions by varying the initial guess, confirms that for ea
e only a local maximum of theN510 RE exists. It is, obvi-
ously, the global maximum.

To investigate the behavior withN, we computed the es
timate of the criticalNc for several values ofe. As could
have been anticipated,Nc grows with e. Table I shows the
results. Column one displayse, column two the entropy of
the solutions of the Lane-Emden equation, column three
maximum of the restriction of the RE to SD for the estimat
Nc , and column four the estimatedNc . It is apparent that in
the high-energy phase (e>20.335), we must go toN larger
than 30 to see global maxima different from the solutions
the Lane-Emden equation. It is worth noting that a simi
scenario was rigorously established by Kiessling for
equilibrium state of self-gravitating systems in contact with
thermal bath@4#.

V. CONCLUSIONS

To define the thermodynamics of gravitational syste
properly, the Newtonian potential must be regularized
short distances, removing its singularity. Only then is
entropy well defined, or, in a mean-field approach, the
tropy functional upper bounded. One way to introduce
regularization is by softening, i.e., by making the poten
smooth at short distances while keeping it basically

FIG. 4. EntropyS versus energye for N510. The solid line is
the entropy of the solution of Eq.~16! and the dashed one corre
sponds to the maximum entropy of distributions of the form~24!.

TABLE I.

Energy Entropy~LE! Entropy ~SD! Nc

0.00 21.78525 21.78247 79
20.12 22.06341 22.06124 56
20.20 22.26269 22.25417 44
20.30 22.50812 22.50519 32
e

r
h

e

f
r
e

s
t

e
-

a
l
-

changed at long distances. There are infinitely many way
achieve that. One interesting possibility is given by the tru
cation of the expansion of the gravitational potential
spherical Bessel functions to a given orderN, as in Eq.~4!.
This regularization has the virtue of reducing the mean-fi
integral equation to a system ofN algebraic equations withN
unknowns. This simplifies considerably the solution of t
problem.

The result that emerges from this approach is the follo
ing: if the regularization is mild enough,N,30, the system
undergoes a phase transition separating a high-energy ho
geneous phase from a low-energy collapsed phase. In
high-energy phase, the mass distribution and the thermo
namic quantities are those of an isothermal sphere. Qua
tatively, they are very close to the solutions of the cor
sponding Lane-Emden equation. The low-energy phas
characterized by a mass distribution consisting of a de
core surrounded by a tenuous halo. As is usual in these c
@3#, the transition from the HP to the CP takes place in
energy interval with negative specific heat, an indication
the thermodynamic instability of the system. These res
are remarkably similar to those found with a different reg
larization ~hard core spheres! @7,8#, and with those derived
from the Lynden-Bell statistics applied to the unregulariz
potential@25#. We can then conclude that the thermodyna
ics is not very sensitive to the form of the regularization.

The effect of a mild regularization is to deform the e
tropy functional in such a way that in the high-energy pha
the global maximum of the entropy with the regularized p
tential is very close to the local maximum with the unreg
larized potential. The analysis based on the Lane-Em
equation is therefore very accurate and the conclusions
tracted from it hold. If the potential is too sharp at sho
distances,N.30, we expect also a collapsing transitio
which however will take place at a much higher energy th
the one predicted by the analysis of the stability of the so
tions of the Lane-Emden equation. Below the critical ene
the global maximum of the RE will not be in the vicinity o
the solution of the Lane-Emden equation, where, never
less, there will be a local maximum of the RE. Besides
scribing such metastable states, the Lane-Emden equa
might be physically relevant in diluted self-gravitating sy
tems with an interparticle distance high enough to be ins
sitive to a truncation of the expansion of the gravitation
potential in spherical Bessel functions, Eq.~4!, to 30 terms.

Finally, let us comment on the structure of the low-ener
microcanonical equilibrium state when the regularized p
tential is very sharp (N.30) at short distances. In this re
gime there are high-entropy mass distributions consisting
a small amount~infinitesimal whenN→`) of matter con-
densed and the rest homogeneously distributed. This m
indicate that at these scales the system is not well descr
by a smooth density, and granularity is playing a major ro

APPENDIX A

Let us show that the solutions of Eq.~13! for n rotation-
ally symmetric are of the form~15! if the potential isf(r )
5(k51

N fk(r ). Introducing spherical coordinates, Eq.~13!
can be written
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n~r !5
3bGM2

R (
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N E
0

1

dr8r 8en(r 8)E
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du sinufk~Ar 21r 8222rr 8cosu!
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0
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dr8r 82en(r 8)
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The integral inu can be readily performed, and gives

E
0

p

du sinu
sin@vk~r 21r 8222rr 8cosu!1/2#

vk~r 21r 8222rr 8cosu!1/2

52fk~r !fk~r 8!. ~A2!

Equations~A1! and ~A2! imply n(r )5(k51
N nkfk(r ), with

the coefficientsnk determined by~16!, QED.

APPENDIX B

Since the numerical solution of Eq.~16! is central to this
work, we shall outline in this appendix the method used
solve it. The problem is to find the roots of a vector functi
defined in a multidimensional space. Eq.~16! can be written
as

Fi~n1 , . . . ,nN!50, ~B1!

with i 51, . . . ,N. We shall use matrix notation and deno
by n the complete set (n1 , . . . ,nN) and by F the vector
(F1 , . . . ,FN).

To solve systems of equations like~B1!, we choose the
Newton-Raphson method, which works as follows@29#: pro-
vided we have an initial guessn, which is close to the solu
tion of ~B1!, we can expandFi in Taylor series in a neigh
borhood ofn:

Fi~n1dn!5Fi~n!1(
j 51

N

Ji j dn j1O~dn2!, ~B2!

whereJi j 5]Fi /]n j is the Jacobian matrix. In matrix nota
tion we have

F~n1dn!5F~n!1J•dn1O~dn2!. ~B3!
ys
o

By neglecting terms of order higher than linear indn and by
settingF(n1dn)50, we obtain a set of linear equations fo
the correctionsdn that move each functionFi closer to zero
simultaneously:

J•dn52F. ~B4!

This linear equation is a standard problem in numerical
ear algebra and can be solved by LU decomposition. T
corrections are then added to the initial guess,

nnew5n1dn, ~B5!

and the process is iterated to convergence. It is possibl
show that the method always results in convergence p
vided the initial guess is close enough to the root. It can a
spectacularly fail to converge, indicating~though not prov-
ing! that the putative root does not exist nearby. To av
problems with the poor global convergence of the meth
we started with many different initial guesses. We alwa
found convergence to the same solution, except whenN was
larger than 30, where we found only convergence at h
energy. We never got two different solutions~within our
convergence criterion; see below! by starting at two different
points.

Numerically, a convergence criterion is necessary.
stopped computations when one of these two conditions

(
i 51

N

udn i u,10210 or (
i 51

N

uFi u,10210, ~B6!

was verified. Each time the functionFi was called, severa
integrals entering into Eq.~16! were performed numerically
using a Romberg algorithm@29#. The integrands are smoot
functions and it was possible to achieve high precision w
a relatively modest numerical effort.
.
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